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Mathematical	optimization,	or	mathematical	programming,	is	a	branch	of	applied	mathematics	that	focuses	on	finding	the	optimal	solution	from	a	set	of	available	alternatives.	This	field	of	study	has	numerous	applications	in	various	disciplines,	including	economics,	finance,	engineering,	and	artificial	intelligence.	Key	concepts	in	mathematical
optimization	include	objective	functions,	constraints,	and	the	feasible	region.	The	objective	function	is	the	goal	to	be	achieved,	such	as	maximizing	profits	or	minimizing	costs.	Constraints	are	limitations	placed	on	the	variables	within	the	problem,	which	may	include	resource	limitations,	budget	caps,	or	physical	restrictions.	The	feasible	region	is	the
set	of	all	possible	points	that	satisfy	these	constraints.	Optimization	problems	can	be	categorized	based	on	their	nature.	These	include	linear	optimization,	where	the	objective	function	and	constraints	are	linear	functions;	nonlinear	optimization,	where	at	least	one	constraint	is	a	nonlinear	function;	integer	optimization,	which	requires	integer
solutions;	combinatorial	optimization,	which	involves	finding	an	optimal	object	from	a	finite	set;	and	stochastic	optimization,	which	includes	random	variables.	Various	mathematical	techniques	can	be	employed	to	solve	optimization	problems.	These	include	gradient	descent,	simplex	algorithm,	Newton's	method,	and	branch	and	bound.	The	choice	of
technique	often	depends	on	the	problem's	characteristics.	Optimization	techniques	play	a	crucial	role	in	decision-making	by	tackling	complex	problems	efficiently.	Genetic	Algorithms	are	heuristic	search	algorithms	inspired	by	natural	selection,	generating	high-quality	solutions	for	optimization	and	search	problems.	However,	optimization	also	poses
challenges	such	as	complexity,	convexity,	sensitivity,	and	scalability.	Challenges	abound	in	optimization,	including	the	NP-hardness	of	some	problems,	making	them	computationally	intensive	and	potentially	unsolvable	in	polynomial	time.	Convexity	affects	the	difficulty	of	finding	the	global	optimum,	while	solutions	can	be	sensitive	to	data	changes
requiring	robust	optimization	techniques.	Mathematical	optimization	has	numerous	applications	across	various	fields,	including	supply	chain	management,	finance,	energy,	telecommunications,	and	machine	learning.	It	involves	optimizing	logistics,	inventory	levels,	production	schedules,	portfolio	optimization,	energy	mix,	network	design,	bandwidth
allocation,	and	training	algorithms	for	neural	networks.	The	study	of	mathematical	algorithms	for	optimization	problems	is	crucial	for	efficient	decision-making	in	complex	scenarios.	As	computational	capabilities	advance,	the	role	of	optimization	in	technology	and	decision	science	will	only	grow	more	significant.	Optimization	techniques	have	been	a
cornerstone	of	mathematics	for	centuries,	with	researchers	and	economists	continually	seeking	innovative	methods	to	tackle	complex	problems.[4][5]	At	its	core,	optimization	involves	finding	the	best	possible	solution	by	systematically	evaluating	different	input	values	within	a	predetermined	set.	This	broad	framework	encompasses	a	wide	range	of
mathematical	disciplines,	including	linear	programming	and	machine	learning.	Optimization	problems	can	be	broadly	categorized	into	two	types:	discrete	and	continuous.	Discrete	optimization	involves	identifying	specific	objects	or	variables	from	a	countable	set,	such	as	integers	or	permutations,	while	continuous	optimization	seeks	to	find	optimal
values	within	a	continuous	space.	Within	these	categories,	there	are	various	subtypes	of	problems,	including	constrained	and	multimodal	issues.	Formulating	an	optimization	problem	typically	involves	defining	a	function	that	maps	inputs	to	desired	outputs,	with	the	goal	of	maximizing	or	minimizing	its	value.	The	problem	can	be	represented	as
follows:	given	a	set	A	and	a	real-valued	function	f	from	A	to	R,	we	seek	an	element	x0	in	A	such	that	f(x0)	is	less	than	or	equal	to	f(x)	for	all	x	in	A	(minimization)	or	greater	than	or	equal	to	f(x)	for	all	x	in	A	(maximization).	This	framework	provides	a	versatile	foundation	for	modeling	a	wide	range	of	real-world	and	theoretical	problems.	In	many	cases,	it
is	sufficient	to	focus	on	minimization	problems,	as	the	opposite	perspective	–	considering	only	maximization	problems	–	would	yield	equivalent	results.	The	value	of	f	can	be	interpreted	as	representing	energy,	cost,	or	utility,	depending	on	the	context.	The	domain	A	of	f,	often	specified	by	constraints	and	inequalities,	represents	the	search	space	or
choice	set,	while	its	elements	are	referred	to	as	candidate	solutions	or	feasible	solutions.	In	machine	learning,	optimization	is	crucial	for	evaluating	the	quality	of	a	data	model	using	a	cost	function,	where	minimization	implies	finding	a	set	of	optimal	parameters	with	the	lowest	error.	The	objective	function,	criterion	function,	or	utility	function	–
depending	on	the	context	–	encapsulates	the	problem's	underlying	structure	and	guides	the	search	for	an	optimal	solution.	Optimal	solutions	in	mathematics	are	typically	referred	to	as	optimal	solutions.	Optimization	problems	are	usually	presented	in	terms	of	minimizing	something.	A	local	minimum,	x*,	is	defined	as	a	value	where	there's	some
flexibility	(δ	>	0)	that	allows	for	any	value	within	a	certain	range	(x	∈	A	where	‖x	−	x∗‖	≤	δ)	to	have	a	function	value	greater	than	or	equal	to	the	value	at	x*.	This	means	that	on	some	level,	all	nearby	values	are	at	least	as	good.	Local	maxima	work	similarly.	While	a	local	minimum	is	as	good	as	any	nearby	value,	a	global	minimum	is	as	good	as	every
possible	value	within	the	feasible	set.	Generally,	unless	the	objective	function	is	convex	in	a	minimization	problem,	there	can	be	multiple	local	minima.	In	a	convex	problem,	if	there's	an	interior	local	minimum	(not	on	the	edge	of	the	set),	it's	also	the	global	minimum,	but	nonconvex	problems	may	have	multiple	local	minima	not	all	of	which	are	global
minima.	Many	algorithms	for	solving	nonconvex	problems	can't	tell	the	difference	between	locally	optimal	and	globally	optimal	solutions,	treating	the	former	as	actual	solutions.	Global	optimization	focuses	on	developing	deterministic	algorithms	that	guarantee	convergence	to	the	actual	optimal	solution	in	finite	time	for	nonconvex	problems.
Optimization	problems	are	often	expressed	with	special	notation,	such	as	min	x∈R	(x^2	+	1)	or	max	x∈R	2x.	Consider	the	following	example:	argmin	x∈(−∞,	−1]	x^2	+	1	asks	for	the	value(s)	of	x	in	the	interval	(−∞,	−1]	that	minimizes	the	objective	function	x^2	+	1.	In	this	case,	the	answer	is	x	=	−1.	Given	article	text	here	that	is,	it	does	not	belong	to
the	feasible	set.	Similarly,	a	r	g	m	a	x	x	∈	[	−	5	,	5	]	,	y	∈	R	x	cos		y	,	represents	the	{x,	y}	pair	(or	pairs)	that	maximizes	the	value	of	the	objective	function	x	cos	y,	with	the	added	constraint	that	x	lie	in	the	interval	[−5,5]	(again,	the	actual	maximum	value	of	the	expression	does	not	matter).	In	this	case,	the	solutions	are	the	pairs	of	the	form	{5,	2kπ}
and	{−5,	(2k	+	1)π},	where	k	ranges	over	all	integers.	Fermat	and	Lagrange	found	calculus-based	formulae	for	identifying	optima,	while	Newton	and	Gauss	proposed	iterative	methods	for	moving	towards	an	optimum.	The	term	"linear	programming"	for	certain	optimization	cases	was	due	to	George	B.	Dantzig,	although	much	of	the	theory	had	been
introduced	by	Leonid	Kantorovich	in	1939.	(Programming	in	this	context	does	not	refer	to	computer	programming,	but	comes	from	the	use	of	program	by	the	United	States	military	to	refer	to	proposed	training	and	logistics	schedules,	which	were	the	problems	Dantzig	studied	at	that	time.)	Dantzig	published	the	Simplex	algorithm	in	1947,	and	also
John	von	Neumann	and	other	researchers	worked	on	the	theoretical	aspects	of	linear	programming	(like	the	theory	of	duality)	around	the	same	time.	Convex	Programming:	A	Paradigm	for	Optimization	LP,	SOCP,	and	SDP	can	be	viewed	as	conic	programs	with	specific	types	of	cones.	Geometric	programming	transforms	posynomials	and	monomials
into	a	convex	program.	Integer	programming	studies	linear	programs	with	integer	constraints,	which	is	non-convex	and	more	difficult	than	regular	linear	programming.	Quadratic	programming	allows	quadratic	terms	in	the	objective	function,	specified	by	linear	equalities	and	inequalities.	Fractional	programming	optimizes	ratios	of	nonlinear
functions,	while	nonlinear	programming	studies	cases	with	nonlinear	parts	in	the	objective	or	constraints.	Stochastic	programming	deals	with	random	variables	affecting	constraints	or	parameters.	Robust	optimization	aims	to	capture	uncertainty	in	data,	finding	solutions	valid	under	all	possible	realizations	of	uncertainties	defined	by	an	uncertainty
set.	Combinatorial	optimization	concerns	discrete	feasible	solutions,	while	stochastic	optimization	is	used	with	noisy	function	measurements	or	random	inputs.	Infinite-dimensional	optimization	studies	infinite-dimensional	spaces,	such	as	function	spaces.	Heuristics	and	metaheuristics	make	few	assumptions	about	the	problem,	often	finding
approximate	solutions	without	guaranteeing	optimality.	Constraint	satisfaction	involves	constant	objective	functions,	commonly	used	in	artificial	intelligence.	Constraint	programming	states	relations	between	variables	as	constraints.	Disjunctive	programming	is	used	where	at	least	one	constraint	must	be	satisfied	but	not	all.	Space	mapping	models
and	optimizes	engineering	systems	using	a	fine	model	accuracy,	exploiting	a	coarse	surrogate	model	in	dynamic	contexts.	Calculus	of	variations	focuses	on	finding	the	best	way	to	achieve	a	goal,	such	as	minimizing	area	while	maintaining	a	specific	curve.	Optimal	control	theory	generalizes	this	by	introducing	control	policies.	Dynamic	programming
solves	stochastic	optimization	problems	by	breaking	them	down	into	smaller	subproblems,	using	the	Bellman	equation	to	describe	their	relationships.	Mathematical	programming	with	equilibrium	constraints	incorporates	variational	inequalities	or	complementarities.	Adding	multiple	objectives	to	an	optimization	problem	increases	complexity,	as	seen
in	structural	design	where	lightness	and	rigidity	must	be	balanced.	The	Pareto	set	contains	designs	that	improve	one	criterion	at	the	expense	of	another,	while	the	Pareto	frontier	plots	weight	against	stiffness	for	optimal	designs.	A	design	is	considered	"Pareto	optimal"	if	it's	not	dominated	by	others.	Multi-objective	optimization	problems	have	been
further	generalized	into	vector	optimization	problems	without	a	predefined	ordering.	Optimization	problems	can	be	multi-modal,	with	multiple	good	solutions	that	may	all	be	globally	or	locally	good.	The	goal	of	a	multi-modal	optimizer	is	to	find	all	(or	some)	of	these	solutions.	Classical	optimization	techniques	often	struggle	when	seeking	multiple
solutions	due	to	their	iterative	approach,	whereas	global	optimization	approaches	are	necessary	for	handling	local	extrema.	The	satisfiability	problem,	or	feasibility	problem,	involves	finding	any	feasible	solution	without	considering	its	objective	value.	This	is	a	special	case	of	mathematical	optimization	where	every	solution	has	the	same	objective
value,	making	it	optimal.	Many	optimization	algorithms	need	to	start	from	a	feasible	point,	which	can	be	achieved	by	relaxing	the	feasibility	conditions	using	a	slack	variable.	The	extreme	value	theorem	states	that	a	continuous	function	on	a	compact	set	attains	its	maximum	and	minimum	values.	Optima	are	typically	found	at	stationary	points	where
the	first	derivative	or	gradient	is	zero.	Equality-constrained	problems	can	be	solved	using	the	Lagrange	multiplier	method,	while	problems	with	equality	and/or	inequality	constraints	can	be	found	using	the	Karush–Kuhn–Tucker	conditions.	Differential	calculus	plays	a	significant	role	in	finding	critical	points,	particularly	for	unconstrained	optimization
problems	with	twice-differentiable	functions.	By	identifying	points	where	the	gradient	of	the	objective	function	is	zero,	one	can	pinpoint	stationary	points.	Additionally,	a	zero	subgradient	certifies	a	local	minimum,	while	positive-negative	momentum	estimation	helps	avoid	local	minima	and	converges	to	the	global	minimum.	Different	optimization
algorithms	vary	in	their	approach	to	evaluating	Hessians,	gradients,	or	function	values.	While	evaluating	Hessians	and	gradients	can	improve	convergence	rates,	they	also	increase	computational	complexity	per	iteration.	In	some	cases,	this	complexity	may	be	excessively	high.	Optimizers	often	prioritize	the	number	of	required	function	evaluations,
which	can	already	be	a	significant	computational	effort.	Derivatives	provide	detailed	information	but	are	harder	to	calculate,	with	approximating	the	gradient	requiring	at	least	N+1	function	evaluations	and	approximating	the	Hessian	matrix	requiring	N²	evaluations.	Newton's	method	requires	2nd-order	derivatives	for	each	iteration,	whereas	pure
gradient	optimizers	require	only	N	evaluations	but	often	need	more	iterations.	The	choice	of	algorithm	depends	on	the	problem	itself.	Methods	that	evaluate	Hessians	include	Newton's	method,	sequential	quadratic	programming,	and	interior	point	methods.	Those	that	evaluate	gradients	or	approximate	them	include	coordinate	descent,	conjugate
gradient,	gradient	descent,	subgradient,	bundle,	and	ellipsoid	methods.	(Note:	I	removed	some	unnecessary	parts	and	kept	the	main	points)	Optimization	Techniques	in	Mathematics	and	Science	=====================================================	The	study	of	optimization	techniques	has	numerous	applications
across	various	fields,	including	combinatorial	optimization	problems.	One	such	method	is	the	Conditional	Gradient	Method	(Frank-Wolfe),	which	is	particularly	useful	for	approximately	minimizing	specially	structured	problems	with	linear	constraints,	especially	in	traffic	networks.	For	general	unconstrained	problems,	this	method	reduces	to	the
gradient	method.	However,	due	to	its	limitations,	alternative	methods	are	employed.	Quasi-Newton	methods,	on	the	other	hand,	are	suitable	for	medium-large	problems	(e.g.,	N


